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Abstract. The most general Two Higgs Doublet Model potential without explicit CP violation depends on
10 real independent parameters. Excluding spontaneous CP violation results in two 7 parameter models.
Although both models give rise to 5 scalar particles and 2 mixing angles, the resulting phenomenology
of the scalar sectors is different. If flavour changing neutral currents at tree level are to be avoided, one
has, in both cases, four alternative ways of introducing the fermion couplings. In one of these models
the mixing angle of the CP even sector can be chosen in such a way that the fermion couplings to the
lightest scalar Higgs boson vanishes. At the same time it is possible to suppress the fermion couplings
to the charged and pseudo-scalar Higgs bosons by appropriately choosing the mixing angle of the CP
odd sector. We investigate the phenomenology of both models in the fermiophobic limit and present the
different branching ratios for the decays of the scalar particles. We use the present experimental results
from the LEP collider to constrain the models.

1 Introduction

The SU(2) × U(1) electroweak model describes our world
at the presently attainable energies. Nevertheless, it is
hard to hide the frustration about our ignorance on the
mass generation mechanism. The spontaneous symmetry
breaking mechanism requires a single doublet of complex
scalar fields. But does nature follow this minimal version
or does it require a multi-Higgs sector?

The current search at LEP already constrains the mass
of a neutral Higgs boson with a standard model like cou-
pling to the fermions to mH > 91.0 GeV [1]. Nevertheless
some multi-Higgs models allow the existence of Higgs par-
ticles with a vanishing coupling to the fermions. In this
paper we investigate all type I CP conserving Two Higgs
Doublets models (2HDM) with such a vanishing coupling
to the fermions. We will predict the experimental signa-
tures of these particles.

Our paper is organized as follows: first we review the
different 2HDM potentials to fix our notation. Thereafter
we try to restrict the physical parameters of the potentials
with theoretical constraints. Then we will discuss the sig-
nature of the different particles and show all characteristic
branching ratios. Finally we constrain the models’ param-
eters using the current experimental data.
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2 The potentials

The minimal version of the standard model which allows
spontaneous symmetry breaking requires one scalar dou-
blet of complex fields. To assure the renormalizability of
the theory, the most general potential is

V = −µ2φ†φ + λ
(
φ†φ

)2
, (1)

where µ and λ are real independent parameters. The mass
eigenstate is a C-even scalar particle, the Higgs boson.

The simplest generalization of the potential amounts
to the introduction of a second doublet of complex fields.
The most general renormalizable potential invariant under
SU(2) × U(1) has fourteen independent real parameters.
The number of predicted particles grows from one to five.
If one imposes that the potential is invariant under charge
conjugation C, the number of parameters is reduced to
ten. Defining x1 = φ†

1φ1, x2 = φ†
2φ2, x3 = <{φ†

1φ2} and
x4 = ={φ†

1φ2} it can be shown [2] that the most general
2HDM potential without explicit C violation is:

V = −µ2
1x1 − µ2

2x2 − µ2
12x3 + λ1x

2
1 + λ2x

2
2 + λ3x

2
3 + λ4x

2
4

+λ5x1x2 + λ6x1x3 + λ7x2x3 , (2)

where µi and λi are real independent parameters. The
number of parameters can be further reduced and there
are two ways to accomplish it. First, the potential can be
made invariant under the Z2 transformation φ1 → φ1 and
φ2 → −φ2. The resulting potential, which we call VA, is

VA = −µ2
1x1−µ2

2x2+λ1x
2
1+λ2x

2
2+λ3x

2
3+λ4x

2
4+λ5x1x2 .

(3)



88 L. Brücher, R. Santos: Experimental signatures of fermiophobic Higgs bosons

h°
t

b

H

H

+ b

-

Fig. 1. Feynman diagram of the largest contribution to
h0 → bb̄

If we allow a soft breaking term −µ2
12x3 in VA, we end up

with a model with spontaneous CP -violation [3].
Second, it is possible to make the potential invariant

under the global U(1) transformation φ2 → eiθφ2. The
potential then reads:

V ′
B = −µ2

1x1−µ2
2x2+λ1x

2
1+λ2x

2
2+λ3

(
x2

3 + x2
4
)
+λ5x1x2 .

(4)
Since we have a global broken symmetry, there is an extra
Goldstone boson in the theory. If we allow the same soft
breaking term, −µ2

12x3, in the potential, we end up with
the scalar sector that has the same general structure as
the scalar sector of the minimal super symmetric model
(MSSM) [4].1 We call this latter model VB . Both VA and
VB have seven degrees of freedom, the five particle masses
and the two rotation angles (α, β). The five particles can
be grouped into 2 scalars (h0,H0), where the small letter
denotes the less massive particle, 1 pseudo-scalar particle
(A0) and 2 charged particles (H±).2 The main difference
between the potentials are the self-couplings in the scalar
sector.

3 The fermiophobic limit

Potentials VA and VB give rise to different self-couplings
in the scalar sector. However, the scalar couplings to the
gauge bosons and to the fermions are the same in both
models. If flavour changing neutral currents (FCNC) in-
duced by Higgs exchanges are to be avoided, one has four
different ways to couple the scalars to the fermions. A tech-
nically natural way to achieve it is to extend the global
symmetry to the Yukawa Lagrangian. This leads to two
different ways of coupling the quarks to the scalars as well
as two different ways of coupling the leptons to the scalars.
The result is a total of four different models, usually de-
noted as model I, II, III and IV (cf. e.g. [6]).

In model I, the lightest CP -even scalar, h0, couples to
a fermion pair (quark or lepton) proportionally to cosα.
Setting α = π/2, h0 becomes completely fermiophobic.
However, h0 can still decay to two fermion pair via h0 →
W ∗W (Z∗Z) → 2 f̄f or h0 → W ∗W ∗(Z∗Z∗) → 2 f̄f . We

1 In the MSSM the λ´s are related to the gauge couplings g
and g′.

2 For the connection between the physical parameters and
the original parameters from the potential see [5].

will include these decays in our analysis. It is worthwhile
to point out that these processes occur near the W (Z)
threshold. Decays of h0 to two fermions can also be in-
duced by scalar and gauge boson loops (see e.g. Fig. 1).
In the 2HDM, the angle α has to be renormalized to render
h0 → ff̄ finite. However, at α = π/2, all one-loop decays
h0 → ff̄ are finite. Thus we can impose the following
condition for δα: the renormalized one-loop decay width
for h0 → ff̄ is equal to the finite unrenormalized decay
width. This condition is equivalent to set [δα]α=π/2 = 0.
We have checked that this condition holds for all fermions.
The only relevant one-loop decay is h0 → bb̄ due to a large
contribution of the Feynman diagram shown in Fig. 1 to
the total decay width.3 Thus, on one hand, h0 is not com-
pletely fermiophobic at α = π/2, and on the other hand,
all decays h0 → ff̄ but h0 → bb̄ are almost zero even at
one-loop level.

The couplings of the CP -odd scalar, A0, and of the
charged scalar, H±, are proportional to cotβ. If we want
these particles to be fermiophobic as well, β has to ap-
proach α (β → α = π/2). In this limit the coupling of h0

to the vector bosons, which is proportional to the sine of
δ ≡ α−β tends to zero. Thus, h0 is not only fermiophobic
but also bosophobic and “ghostphobic” – h0 always needs
another scalar particle to be able to decay. The differences
between potential A and B can be extremely important
in this limit since h0 will have different signatures in each
model. In contrast, the heaviest CP -even scalar, H0, ac-
quires the Higgs standard model couplings to the fermions
in this limit. We will relax the limit β ≈ π/2 and analyze
the decays as a function of δ and of the Higgs masses.

4 Theoretical mass limits

Although the parameters of the 2HDM’s are, in contrast
to the MSSM, almost unconstrained, it is possible to de-
rive some bounds on the masses of the scalar sector par-
ticles in the fermiophobic limit. We want to look for the
allowed region in the mh0-β plane so that the calculations
do not leave the perturbative regime. Several methods of
achieving theoretical bounds on these masses have been
published [7]. Tree-level unitarity bounds have been de-
rived in [8] and [9] for potential A. We use the bounds
from [8]:

mh0 ≤
√

16π
√

2
3 GF

cos2 β − m2
H0 cot2 β , (5)

where GF = 1.166 GeV −2 denotes Fermi´s constant. Equa-
tion (5) is plotted in Fig. 2, where δ = π/2 − β has been
chosen for convenience. Fig. 2 shows that in the limit
δ → 0 the dependence on the angle is strong, whereas
the dependence on mH0 is very mild. In this limit h0 is
massless, which is already clear from the definition of mh0

in the fermiophobic limit [5]:

mh0 =
√

2λ1 v cos β (6)
3 The coupling [H+t̄b] is proportional to the t-quark mass.
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Fig. 2. Limit on mh0 as a function of δ in potentialA

No tree-level unitarity bounds have been derived for
potential B. A full derivation of these limits would be
beyond the scope of this article. Nevertheless, we know
that in the fermiophobic limit [5]:

m2
h0 = m2

A − 2 (λ+ − λ1) v2 cos2 β , (7)

with λ+ = 1
2 (λ3 + λ5) and v = 246 GeV/c2 denoting the

vacuum expectation value. The equation shows, that in
the limit δ → 0 the masses of h0 and A0 will be degener-
ated. As already stated, stringent bounds on all λi´s are
missing.4 On the other hand it might be sufficient to ex-
plore equation (7) for different values of λ+ − λ1 ≡ ∆λ.
Fig. 3 shows mh0 as a function of δ for different ∆λ’s.
On the left plot we set mA = 80 GeV and on the right
plot mA = 120 GeV . The region limited by each value of
|∆λ| is the allowed region for mh0 for the given value of
mA. Although it is most likely that |∆λ| < 10, a value of
|∆λ| = 100 cannot strictly be excluded, if one wants to be
very conservative.

In potential B, if δ ≤ 0.05, the masses of the lightest
scalar and the pseudo-scalar are almost degenerated. mh0

can differ at most 15% from mA, if |∆λ| < 10. In the region
where 0.05 < |δ| ≤ 0.1 the situation smoothly changes
for the same ∆λ. The restriction on the mass splitting
vanishes totally when δ � 0.1.

In potential A we have an upper limit for mh0 inde-
pendent of mA. This upper bound depends on the value of
mH0 . It can be as low as 45 GeV or reach a maximum of
approximately mW , if δ = 0.05. For δ = 0.1 the bound on
mh0 varies between 90 GeV and 140 GeV . Very stringent
bounds on mh0 can be found, if mH0 is around 1 TeV
and δ is large. On the other hand for mH0 < 700 GeV
no significant bounds can be found for a wide range of δ
values.

We want to stress again (see [5]) that respecting these
bounds is important to make reliable predictions on the
decays of the Higgs particles of the 2HDM. Otherwise, one
runs into spurious infinities of the couplings, which are not
present in the original parameters of the potential.

These theoretical bounds and the overall picture given
by the branching ratios shown in the next sections, led us

4 However λ+ = m2
A

2v2 , which means 0 < λ+ < 8.3, if mA <
1 TeV .

to distinguish between three different regions for δ. For
our later qualitative analysis it is convenient to define the
following regions:

– the tiny δ region where |δ| ≤ 0.05,
– the small δ region with 0.05 < |δ| ≤ 0.1 and
– finally the medium and large δ region when |δ| > 0.1.

5 The lightest scalar Higgs boson

As already pointed out, the lightest scalar Higgs boson
(h0) has no tree level couplings to the fermions for α =
π/2. Thus the following tree level decays have to be con-
sidered:

h0 → W+W−; h0 → ZZ; h0 → ZA0;
h0 → W±H∓; h0 → A0A0; h0 → H+H−.

Additionally the following one-loop induced decays are im-
portant:

h0 → γγ; h0 → Zγ; h0 → bb̄.

Moreover, decays to fermions via virtual vector bosons
have to be taken into account, namely:

h0 → W ∗W ∗ → ff̄f f̄ ; h0 → W ∗W → ff̄W ;
h0 → Z∗Z∗ → ff̄f f̄ ; h0 → Z∗Z → ff̄Z.

The partial tree-level decay widths are listed in appendix
A. The one-loop induced decays have been calculated with
xloops [10]. Decays via virtual particles have been calcu-
lated in [11]. We have taken these formulas and changed
them appropriately. The decays into one vector boson and
one scalar have been calculated in this paper for on-shell
particles only. Near the thresholds decays via virtual par-
ticles (i.e. h0 → W ∗H± and h0 → Z∗A0) can be taken
into account. These decays have been calculated in [12],
where also formulas are given. The same applies to all
other scalar particle decays calculated in the following sec-
tions.

As stated earlier, the only significant decay mode to
fermions, via vector boson and scalar loops, is h0 → bb̄.
For all the other fermionic decays the Feynman graphs
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Fig. 3. Limit on mh0 as a function of δ for mA = 80 GeV and mA = 120 GeV

are suppressed either by the Cabbibo-Kobayashi-Maskawa
matrix or by the small mass of the fermions in the loop.
However, the diagram shown in Fig. 1 is suppressed by a
tan2 δ factor when compared with the corresponding dia-
gram in h0 → γγ. Thus, as will be seen below, the decay
h0 → bb̄ is of minor importance in the tiny and small δ
region.

In potential A the upper bound for the mass of the
lightest scalar Higgs boson is approximately the W mass
in the tiny δ region. Thus h0 has only two possible decay
modes. Either it decays into A0A0, if the mass of the light-
est scalar is twice as large as the mass of the pseudo-scalar
Higgs boson, or it decays into two photons.5 In the small
δ region the growth of the upper mass limit for mh0 gives
rise to more decay modes, as can be seen in Fig. 4. For
small h0 masses the situation is the same as in the tiny δ
region. Depending on the mass of the pseudo-scalar, the
dominant decay is again either h0 → A0A0 or h0 → γγ. As
soon as mh0 > mW , decays via virtual vector bosons over-
take the decay to γγ and give rise to a fermionic signature
of h0. Of course the value of mh0 , for which the branching
ratio of h0 → W ∗W ∗ becomes bigger than 50% depends
on δ. At the lower end of the small δ region this happens
approximately at mh0 = 110 GeV , whereas at the upper
end it is close to the W mass. At first, in the large δ re-
gion the branching ratio does not change much. Of course
the upper bound for mh0 looses importance and all decays
become kinematically allowed, as can be seen in Fig. 5. As
δ increases, the decay h0 → bb̄ becomes more and more
significant for small masses of mh0 . If e.g. mh0 = 20 GeV
we get a branching ratio for h0 → bb̄ of the order of 30%
at δ = 0.5 and of 75% at δ = 1.0. This reflects the already
mentioned tan2 δ suppression of this decay mode.

In potential B the masses of h0 and A0 are almost
degenerated in the tiny δ region. Thus for small masses
(< mW ) h0 decays mainly into two photons. On the other
hand, no upper bound on mh0 exists in potential B. As a
consequence a heavy h0 can also decay via virtual vector
bosons into fermions in the tiny δ region (cf. Fig. 6). In the
small δ region the branching ratio strongly depends on the

5 The third possible decay, h0 → H+H− is already ruled
out by the experimental lower limit on the mass of the charged
Higgs boson (cf. Sect. 9).
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parameters mA and mH+ . It can either resemble the plot
for potential A (see Fig. 4), or, due to strong cancellation
between the H+- and the W -loops in the h0 → γγ decay,
it can be as shown in Fig. 7. In this figure we see that
h0 → γγ only dominates until mh0 ≈ 30 GeV . Then,
decays via virtual vector bosons are the major decays of
h0. Note that h0 → bb̄ is suppressed in a similar way
to h0 → γγ, because both decays depend on the same
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couplings of h0 to the vector bosons and to the scalars. In
the large δ region this behaviour is almost the same. Of
course, as in potential A, for some value of δ the decay
h0 → bb̄ will dominate over h0 → γγ for small values of
mh0 .

Finally we show the delay width of h0 as function of
mh0 for different values of δ in Fig. 8. As expected, the
total decay width grows with mh0 and δ. We do not show
the total decay width for potential B because the overall
behaviour is the same as for potential A.

6 The pseudo-scalar Higgs boson

For our analysis the following tree level decays have to be
considered:

A0 → ff̄ ; A0 → Zh0; A0 → W±H∓

Furthermore the following one-loop decays have been cal-
culated:

A0 → γγ; A0 → Zγ; A0 → W+W−;
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A0 → ZZ; A0 → gg,

where g denotes a gluon.
Leaving aside the tree level decays into a final state

with at least one Higgs particles, all decays depend on the
coupling of A0 to the fermions (cot2 β in model I). This is
a consequence of the fact that without fermions CP con-
servation is equivalent to separate C and P conservation.
So, no on-shell decay with only vector bosons in the final
state is possible. When the fermions are included, C and
P are no longer independently conserved, and so A0 can
decay into two photons, for instance, via a fermion loop.

On the other hand, when fermions are added, A0 may
directly decay into them. As these are tree-level decays,
their partial decay widths are obviously larger than one-
loop induced decay widths. This can also be seen in Fig. 9.
This figure clearly shows, that the one-loop decays of the
pseudo-scalar Higgs are in the per mille region when com-
pared to the fermionic decays. We have checked that the
A0 branching ratio is independent of δ below Zh0 and
W±H∓ thresholds. As we have pointed out, in this region
all decays just depend on cotβ. This dependence cancels
in the branching ratios, but not in the decay width. Above
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these thresholds A0 decays mainly into Zh0 and W±H∓,
as can be seen in Fig. 10. Only in the very large δ region
the decays into fermions dominate due to the dependence
on tan δ.

Although below the Zh0 and the W±H∓ thresholds
A0 decays mainly into fermions, the total decay width of
A0 decreases with tan2 δ in this region. So in the limit
δ → 0 the pseudo-scalar Higgs will be a stable particle
leaving no characteristic signature in the detector. Fur-
thermore, for a sufficiently small δ, A0 decays outside the
detector (see Fig. 11). So, the only way to detect it in
this δ region is to consider reactions with missing energy
and momentum in the final state. The situation changes,
as soon as the Zh0 or the W±H∓ thresholds are crossed.
Then A0 decays inside the detector with either a Zh0 or
a W±H∓ signature.

Finally we notice, that all decays either depend on the
coupling of A0 to fermions or to vector bosons. There is
no decay, where couplings of the scalars among themselves
contribute to the decay width. Thus for the pseudo-scalar
Higgs boson no difference between potential A and B can
be seen in the branching ratios and decay widths. So, the
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signature of the A0 may be called Higgs potential inde-
pendent.

7 The charged Higgs boson

The charged Higgs boson has the following tree-level de-
cays:

H± → fu,df̄d,u; H± → W±h0;

H± → W±A0; H± → W±H0

Moreover the following one-loop decays have to be consid-
ered:

H± → W±γ; H± → W±Z

Again, the 16 (32) graphs for H± → W±γ (H± → W±Z)
have been calculated with xloops [10].

In potential A the branching ratios of the charged
Higgs boson show no surprises (Fig. 12). If the mass of
H± is below the W mass the signature will be fermionic
and independent of the value of δ. In this mass region
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the situation is similar to the former situation concern-
ing the pseudo-scalar Higgs boson. Decreasing δ just de-
creases the total decay width, but leaves the branching
ratio unchanged. The situation changes, as soon as the
Wγ threshold is passed. Then, in the tiny δ region the
signature will be H± → W±γ. In the small δ region, as δ
grows the branching ratio of H± → W±γ decreases to less
than 1%. Consequently in the large δ region the signature
is again fermionic. As soon as decays to the W and either
A0 or h0 are kinematically allowed, the sum of these de-
cays will have an approximately 100% branching ratio for
almost all values of δ. Only if δ becomes very large and
mH+ > mt +mb the decay H+ → tb̄ will be the dominant
decay mode.

In potential B below the Wγ and above the Wh0 or
WA0 threshold the situation is the same as in potential A.
When the decay H± → W±γ is important, the situation
strongly depends on the choice of parameters. In principle,
due to the lack of an upper bound for mh0 in potential B,
the interval of mH+ , where H± → W±γ could be much
larger than in potential A. On the other hand, it turns
out that due to the degeneracy of mh0 and mA0 the decay
to Wγ can be suppressed to a few percent in comparison
to the fermion decays (see Fig. 14). This behaviour can
also be seen for very tiny values of δ. If the restriction on
mA0 and mh0 is limbered and their masses just differ by
a few GeV , H± → W±γ regains its importance (Fig. 13).
Moreover, in contrast to potential A, it can still be the
major decay in the small and at the start of the large δ
region. Even for δ = 0.2 the branching of H± → W±γ
can reach up to 10%, if the masses of the Higgs sector are
chosen appropriately. Of course for an even larger value
of δ the branching ratio for this decay mode will become
unimportant.

8 The heavy scalar Higgs boson

For the sake of completeness we show the decay modes
of the heavy scalar Higgs boson, although its coupling to
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Fig. 15. Branching ratios for H0 at δ = 0.1 in potential A.
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Fig. 16. Branching ratios for H0 at δ = 0.5 in potential B.

the fermions is large. Thus one-loop decays have no im-
portance in the branching ratio of H0. So we just consider
the following tree-level decays:

H0 → ff̄ ; H0 → H+H−; H0 → A0A0;
H0 → W±H∓; H0 → ZA0; H0 → ZZ;
H0 → W+W−

Note that the decay H0 → h0h0 vanishes in the fermio-
phobic limit (i.e. for α = π/2).

A typical plot of the branching ratio as a function of
the mass is shown in Fig. 15. Obviously, the heavy scalar
Higgs boson mainly decays into bb̄ below, and into WW
above the two vector boson threshold. This behaviour is
typical for both potentials. The only difference between
the potentials can be recognized in the purely scalar decay
modes. In potential A their contribution varies from 0% to
≈ 20% depending on the parameters chosen. In potential
B the decay H0 → H+H− can be the major decay mode
for some values of δ, mH+ and mA, as can be seen in
Fig. 16.

Only if δ > 1.0, H0 mainly decays to tt̄. Notice that
the branching ratios shown in Fig. 15 are similar those
obtained for the SM Higgs boson, if the scalar decays are
ignored.
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9 Constraints on the models

In this section we use the available experimental data and
the bounds derived in Sect. 4 to constrain the models.

Most production modes of the pseudo-scalar Higgs bo-
son at LEP are suppressed in the fermiophobic limit. An
exception is the associated production Z∗ → h0A0 when
kinematically allowed. The more δ tends to zero the larger
becomes the cross section for this production mode. How-
ever, the obtained limit for mA is not independent of the
mass of the lightest scalar Higgs boson. This production
mechanism has recently been measured by the DELPHI
coll. [13], where more detailed results can be found. For
this associated production we roughly summarize their re-
sult in the following inequation:√

m2
h0 + m2

A ≥ 80 GeV (8)

For the lightest scalar Higgs boson mass the most strin-
gent bounds can be derived from the experimental mea-
surement of massive di-photon resonances. The most re-
cent data have been published in [14,13]. We have used
this data to exclude some regions in the mh0-δ plane. We
have plotted the results in Fig. 17 for potential A and in
Fig. 18 for potential B. Moreover we have inserted the

theoretical constraints shown in Fig. 2. In Fig. 17 (poten-
tial A) this can be seen as the lower limit on δ for a given
h0 mass. For potential B the experimental bound on mA

can be used to derive a lower limit on δ for a given mh0 .
In Fig. 18 we have plotted this area for different values of
∆λ.6

Model independent bounds for the charged Higgs bo-
son mass can be obtained using the universality of the elec-
tromagnetic coupling. Measurements of e+e− → H+H−
at LEP currently yield a lower bound of mH+ > 59 GeV
[15]. In hadron colliders the search for t → H+b gives
a limit of Br(t → H+b) × Br(H+ → τντ ) ≤ 50% if
60 GeV ≤ mH+ ≤ 165 GeV [16]. This imposes a lower
as well as an upper limit on β in 2HDM’s with coupling
to fermions of type II or III. Unfortunately, in the 2HDM
I this simply gives a very large upper limit on δ, but no
lower limit. Furthermore, we have shown in Sect. 7 that
for mH+ > mW the decay H+ → τντ can be suppressed
in the fermiophobic limit.

10 Conclusion and outlook

We have calculated the branching ratios for all Higgs par-
ticles of fermiophobic 2HDM´s as a function of the Higgs
masses and δ. We have shown that the two different scalar
sectors, models A and B, give rise to different signatures
for some regions of the parameter space. Most of the mass
bounds based on a general 2HDM or on the MSSM do not
apply in the fermiophobic case. We have used the avail-
able experimental data and tree-level unitarity bounds to
constrain the models. It turns out, that there is still a wide
region of this parameter space not yet excluded by exper-
imental data and still accessible at the LEP collider. So,
one should keep an open mind for surprises in the Higgs
sector.
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A Formulas for the decay widths

Here we present the most important formulas for the decay
widths of the Higgs particles. We use the Kallen function
λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz in the formu-
las below. For the lightest scalar the following tree-level
decays have been calculated:

Γ (h0 → W+W−) =
g2 m2

W sin2 δ

8π m2
h0

√
m2

h0 − 4m2
W

×
[

1 +

(
m2

h0 − 2m2
W

)2

8 m4
W

]

Γ (h0 → ZZ) =
g2 m4

Z cos2 δ

16π m2
W m2

h0

√
m2

h0 − 4m2
Z

6 c.f. Sect. 4.
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×
[

1 +

(
m2

h0 − 2m2
Z

)2

8 m4
Z

]

Γ (h0 → ZA0) =
g2 cos2 δ

64π m2
W m3

h0

λ
3
2

(
m2

h0 , m2
A0 , m2

Z

)
Γ (h0 → W±H∓) =

g2 cos2 δ

64π m3
h0m2

W

λ
3
2 (m2

h0 , m2
H+ , m2

W )

Γ (A/B)(h0 → A0A0) =

√
m2

h0 − 4m2
A0

32π m2
h0

∣∣∣C(A/B)
[h0A0A0]

∣∣∣2

Γ (A/B)(h0 → H+H−) =

√
m2

h0 − 4m2
H+

16π m2
h0

∣∣∣C(A/B)
[h0H+H−]

∣∣∣2 .

The couplings C
(A/B)
[h0H+H−] for either potential A or poten-

tial B are listed in appendix B. The one-loop decays have
been automatically calculated with xloops. Unfortunately
the formulas are to large to be shown here. A compact
formula for h0 → γγ in the MSSM can be found in [17].

For the pseudo-scalar Higgs boson one gets:

Γ (A0 → ff̄) = Nc

g2m2
f cot2 β

32πm2
W

√
m2

A0

4
− m2

f

×
[
1 − 4m2

f

m2
A0

]

Γ (A0 → Zh0) =
g2 cos2 δ

64π m2
W m3

A0

λ
3
2

(
m2

A0 , m2
h0 , m2

Z

)
Γ (A0 → W±H∓) =

g2

64π m2
W m3

A0

λ
3
2

(
m2

A0 , m2
H+ , m2

W

)

Γ (A0 → γγ) =
m3

A0

32π

∣∣∣∣ Nce
3m2

t cot β

9 sin θW mW π4

× Oneloop3Pt
(
0, 0, 0, mA0 , 1

2mA0 , 1
2mA0 , mt, mt, mt

)∣∣∣∣
2

Nc denotes the number of quark colors. Beside A0 → γγ
all other formulas for one-loop decays have been skipped.
The definition of the OneLoop3Pt function can be found
in [18]. An O(αs) improved formula for Γ (A0 → qq̄) can
be found in [19].

The charged Higgs boson has the following partial de-
cay widths:

Γ (H+ → ftf̄b) =
g2 cot2 β Nc |Vtb|2

64π m2
W

λ
1
2 (m2

H+ , m2
t , m

2
b)

m3
H+

× [(
m2

H+ − m2
t − m2

b

) (
m2

t + m2
b

)
+ 4 m2

t m
2
b

]
Γ (H+ → W+h0) =

g2 cos2 δ

64π m3
H+m2

W

λ
3
2 (m2

H+ , m2
h0 , m2

W )

Γ (H+ → W+A0) =
g2

64π m3
H+m2

W

λ
3
2 (m2

H+ , m2
A0 , m2

W )

Γ (H+ → W+H0) =
g2 sin2 δ

64π m3
H+m2

W

λ
3
2 (m2

H+ , m2
H0 , m2

W )

Note that Γ (H+ → ftf̄b) is also valid for leptons with
mν ≡ mt = 0 and Nc = 1. Again we skip the formula for
H+ → W+γ and H+ → W+Z due to its length.

For the heavy Higgs boson (H0) we calculate:

Γ (H0 → ff̄) =
g2 Nc m2

f sin2 α

64π m2
W sin2 β

√
m2

H0 − 4m2
f

Γ (H0 → W+W−) =
g2 m2

W cos2 δ

8π m2
H0

√
m2

H0 − 4m2
W

×
[

1 +

(
m2

H0 − 2m2
W

)2

8 m4
W

]

Γ (H0 → ZZ) =
g2 m4

Z cos2 δ

16π m2
W m2

H0

√
m2

H0 − 4m2
Z

×
[

1 +

(
m2

H0 − 2m2
Z

)2

8 m4
Z

]

Γ (H0 → ZA0) =
g2 sin2 δ

64π m2
W m3

H0

×λ
3
2

(
m2

H0 , m2
A0 , m2

Z

)
Γ (H0 → W±H∓) =

g2 sin2 δ

64π m3
H0m2

W

×λ
3
2 (m2

H0 , m2
H+ , m2

W )

Γ (A/B)(H0 → A0A0) =

√
m2

H0 − 4m2
A0

32π m2
H0

∣∣∣C(A/B)
[H0A0A0]

∣∣∣2

Γ (A/B)(H0 → H+H−) =

√
m2

H0 − 4m2
H+

16π m2
H0

∣∣∣C(A/B)
[H0H+H−]

∣∣∣2

B Feynman rules

In this section we present the Feynman rules for the triple
and quartic interactions of scalar fields which are different
in both potentials. A full treatment of all Feynman rules
will be found in [20].

We define the following quantities:

Aαβ ≡ cos3 β sinα + sin3 β cos α

Bαβ ≡ cos3 β cos α − sin3 β sinα

Cαβ ≡ sin3 α cos β + cos3 α sinβ

Dαβ ≡ cos3 α cos β − sin3 α sinβ

Eαβ ≡ (cos2 α − sin2 β)

Fαβ ≡ (cos2 α − cos2 β)
Gαβ ≡ cos β sinβ − 3 cos α sinα

Hαβ ≡ cos 2β cos δ cos(α + β)

Kαβ ≡ cos 2β(cos2 α − cos2 β)
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B.1 Different triple scalar vertices in VA
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MW

(
M2

h
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B.2 Different triple scalar vertices in VB
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h) + M2
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B.3 Different quartic scalar vertices for VA
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sin2 2βM2
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HA2

αβ + M2
hB2

αβ)

AAAA − 3ig2

sin2 2βM2
W
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HA2
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hB2

αβ)

AAH+H− − ig
sin2 2βM2

W

(M2
HA2

αβ + M2
hB2

αβ)

H+H−hh − ig2

2M2
W

[
1

sin2 2β
(M2

HAαβ sin 2α cos δ

+2M2
hBαβDαβ) + M2

H+ sin2 δ
]

H+H−HH − ig2

2M2
W

[
1

sin2 2β
(2M2

HAαβCαβ

+M2
hBαβ sin 2α sin δ) + M2

H+ cos2 δ
]

AAhh − ig2

2M2
W

[
1

sin2 2β
(M2

HAαβ sin 2α cos δ

+2M2
hBαβDαβ) + M2

A sin2 δ
]

AAHH − ig2

2M2
W
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1

sin2 2β
(2M2

HAαβCαβ

+M2
hBαβ sin 2α sin δ) + M2

A cos2 δ
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2M2
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sin 2α
sin2 2β

(M2
HAαβ sin δ

+M2
hBαβ cos δ) − 1
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H+ sin 2δ
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sin2 2β

(M2
HAαβ sin δ

+M2
hBαβ cos δ) − 1
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A sin 2δ
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sin2 2βM2
w

(4M2
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H sin2 2α cos2 δ)
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sin2 2βM2
W
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B.4 Different quartic scalar vertices for VB
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+4M2
HCαβ sin δ) − M2

A(sin2 α − sin2 β)
]

hhHH − ig2 sin 2α
4 sin 2βM2

W

[
M2

H − M2
h

+M2
A

3 sin 2α
sin 2β (sin2 δM2

H + cos2 δM2
h) − M2

A

]
AAG0G0 − ig2

4M2
W

[
sin 2α
sin 2β (M2

H − M2
h)

+3(sin2 δM2
H + cos2 δM2

h) − 2 M2
A

]
H+H−G+G− − ig2

4M2
W

[
sin 2α
sin 2β (M2

H − M2
h)

+2(sin2 δM2
H + cos2 δM2

h)
]

G+G−AA − ig2

2M2
W

[
M2

H+ − M2
A

+ 1
sin 2β (cos δAαβM2

H − sin δBαβM2
h)

]
H+H−G0G0 − ig2

2M2
W

[
M2

H+ − M2
A

+ 1
sin 2β (cos δAαβM2

H − sin δBαβM2
h)

]
H+H−H∓G± − ig2

M2
W

sin 2β

[
sin δAαβM2

H + cos δBαβM2
h

−M2
A cos 2β

]
H+H−G0A − ig2

2 M2
W

sin 2β

[
sin δAαβM2

H + cos δBαβM2
h

−M2
A cos 2β

]
AAAG0 − 3 ig2

2 M2
W

sin 2β

[
sin δAαβM2

H + cos δBαβM2
h

−M2
A cos 2β

]
AAH∓G± − ig2

2 M2
W

sin 2β

[
sin δAαβM2

H + cos δBαβM2
h

−M2
A cos 2β

]
G+G−hh − ig2

4M2
W

[
1

sin 2β (sin 2α cos2 δM2
H
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−2 sin δDαβM2
h) + 2 cos2 δ(M2

H+ − M2
A)

]
G0G0hh − ig2

4M2
W

[
1

sin 2β (sin 2α cos2 δM2
H

−2 sin δDαβM2
h)

]
G+G−HH − ig2

4M2
W

[
1

sin 2β (2 cos δCαβM2
H

− sin2 δ sin 2αM2
h) + 2 sin2 δ(M2

H+ − M2
A)

]
G0G0HH − ig2

4M2
W

[
1

sin 2β (2 cos δCαβM2
H

− sin2 δ sin 2αM2
h)

]
H∓G±HH − ig2

8M2
W

[
1

sin 2β (4 sin δCαβM2
H

+ sin 2δ sin 2αM2
h + 2 M2

AFαβ)

−2 sin 2δ(M2
H+ − M2

A)
]

H∓G±hh − ig2

8M2
W

[
1

sin 2β (sin 2δ sin 2αM2
H + 4 cos δDαβM2

h

+2 M2
AEαβ) + 2 sin 2δ(M2

H+ − M2
A)

]
AG0HH − ig2

8M2
W

[
1

sin 2β (4 sin δCαβM2
H + sin 2δ sin 2αM2

h

+2 M2
AEαβ)

]
AG0hh − ig2

8M2
W

[
1

sin 2β (sin 2α sin 2δM2
H + 4 cos δDαβM2

h

+2 M2
AFαβ)

]
G+G−hH − ig2 sin 2δ

8M2
W

[
sin 2α
sin 2β (M2

H − M2
h) + 2(M2

H+ − M2
A)

]
G0G0hH − ig2 sin 2δ

8M2
W

[
sin 2α
sin 2β (M2

H − M2
h)

]
G∓H±hH − ig2

4M2
W

[
sin 2α
sin 2β (sin2 δM2

H + cos2 δM2
h − M2

A)

− cos 2δ(M2
H+ − M2

A)
]

AG0hH − ig2

4M2
W

[
sin 2α
sin 2β (sin2 δM2

H + cos2 δM2
h)

]
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